金融市场

金融市场是全球经济活动的核心,它是一个复杂的系统,通过无数种交易和活动,将全球的投资者、企业、政府和其他实体紧密地联系在一起。金融市场主要的功能是促进资金的有效流动和使用,提供了资金需求和供应之间的桥梁。它允许投资者通过股票、债券、期货、期权和其他金融工具进行投资,从而为企业和政府提供必要的资金。 金融市场具有高度的流动性和透明度,使得参与者能够迅速、准确地了解市场情况和资产价格的变化。它的效率和健全性直接影响着整个经济系统的稳定和增长。此外,金融市场也是评估经济风险和决定资本成本的关键场所。 然而,金融市场也充满了风险和挑战。市场波动、信息不对称、信用风险等问题都可能对投资者和市场整体造成损失。因此,有效的监管和风险管理对于维护金融市场的健康和稳定至关重要。 总的来说,金融市场是现代经济的心脏,它通过促进资本的流动和分配,推动着全球的经济增长和发展。

如何将60分钟K线合成120分钟K线

问题

如何利用60分钟K线来合成120分钟K线呢?

视频

https://www.bilibili.com/video/BV1d54y1d7tv/

策略源码

https://bigquant.com/experimentshare/4e081ef44d3246f48551c6eee74f629d

\

更新时间:2024-06-07 10:55

时区瑕疵策略

视频讲解

查看视频

策略源码

https://bigquant.com/codeshare/621dce87-bd66-43b2-b08d-ad986eeb3135

\

更新时间:2024-06-07 10:55

一阳穿多线策略的因子描述-滚动训练

【此文档为旧版】 相关新版文档参考:

https://bigquant.com/wiki/doc/ai-rq8QOC2fDb

策略案例

https://bigquant.com/experimentshare/16571b942a8a4a92a4914c15f65d0883

\

更新时间:2024-06-07 10:55

高频回测算子使用(HFTrade)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

基于遗传算法挖掘股票因子

{{membership}}

https://bigquant.com/codeshare/9aa6342b-2c67-4417-afea-0d5874e5d340

\

更新时间:2024-06-07 10:55

参数寻优获得/夏普信息比/最大回撤/胜率-2

8月19日Meetup模板:第二种方式

https://bigquant.com/experimentshare/5e82e63fe5154eb58b69ffa37998d588

\

更新时间:2024-06-07 10:55

三因子线性模型(包含滚动训练)

{{membership}}

https://bigquant.com/codeshare/37d36e41-2184-4342-b581-9561f199eeec

\

更新时间:2024-06-07 10:55

模型保存读取

7月16日Meetup模板案例:

策略案例

https://bigquant.com/experimentshare/0aae2066f74e475ba198a6f79757c03f

\

更新时间:2024-06-07 10:55

互信息计算

策略案例

https://bigquant.com/experimentshare/6dbc5eb845fe48d0a8b61e60785cf762

\

更新时间:2024-06-07 10:55

另类标签(calmar)选股模型

https://bigquant.com/experimentshare/887354a18288489e9bb5d65923da8e9b

\

更新时间:2024-06-07 10:55

自定义模块的使用方法

视频讲解

查看视频

策略源码

https://bigquant.com/codeshare/44ce0baf-6d4c-4f9c-9b7b-90ea4b12ab19

\

更新时间:2024-06-07 10:55

LSTM+CNN深度学习预测股价

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/c13d6baefe5d4c75bb87eea9364b0f75

\

更新时间:2024-06-07 10:55

强有效因子下的线性模型选股策略

备注:本策略含有未开放的数据,故克隆之后无法运行。

{{membership}}

https://bigquant.com/codeshare/b6e80d6b-f5e0-4778-97cf-77fcadb7b488

\

更新时间:2024-06-07 10:55

专利因子与量化选股

视频讲解

https://www.bilibili.com/video/BV1ZG41187mJ?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086

知识库链接

专利因子在量化选股中的运用

策略源

更新时间:2024-06-07 10:55

筹码理论的探索-筹码分布计算的实现

问题

有筹码分布指标吗

视频

https://www.bilibili.com/video/BV1Yu411X7C2/

策略源码

筹码理论的探索-筹码分布计算的实现

更新时间:2024-06-07 10:55

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2024-06-07 10:55

storanker模型同时买入因子最大和最小

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

策略思想和因子哪个更重要

问题

策略思想和因子哪个更重要

视频

https://www.bilibili.com/video/BV15b4y1s7w7/

策略源码

文档及源码:策略思想和因子哪个更重要

更新时间:2024-06-07 10:55

如何将回测设置为T+2开盘买入,T+3尾盘卖出?

问题

如何将回测模块设置成T+2开盘买入,T+3尾盘卖出(目前我们支持的是T+1买入)

视频

https://www.bilibili.com/video/BV1bT411u71x?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/157e67091c1b4534b7ea1f0a4255a38b](https://bigquant.com/experi

更新时间:2024-06-07 10:55

大盘收益率相对于个股的收益率的3天内相关系数因子demo

2021年3月25日Meetup策略:

策略案例


https://bigquant.com/experimentshare/563c042349504bbbb359118345b65480

\

更新时间:2024-06-07 10:55

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2024-06-07 10:55

分钟因子加工

https://bigquant.com/experimentshare/8671700b78014d6cbe44261ba23820f9

\

更新时间:2024-06-07 10:55

交易引擎

交易引擎简介

1.1 交易引擎的作用

交易引擎回测模块的功能是实现用户的交易逻辑

  • 当用户将策略编写好之后,我们需要在一段时间当中,用策略逻辑,模拟一下在金融市场中的买卖,通过收益情况判断策略的好坏
  • 如果想测试策略在某段历史时期上的表现,只需在本地运行回测模块即可
  • 如果想测试策略从今天开始一直到未来的表现,需要将含有回测模块的策略提交到模拟交易
  • 在交易引擎中,用户可以自定义一些买卖逻辑,也叫交易逻辑,它和策略逻辑还是有一定区别的

策略逻辑与交易逻辑的对比:

策略逻辑 交易逻辑
使用什么样的数据\n使用什么

更新时间:2024-06-07 10:55

换手率公式及使用技巧含Python

换手率(Turnover)通常用于描述股票或其他证券在特定时间内的交易活跃程度。金融市场中,换手率可用于衡量股票的流动性,即股票在市场上买卖的频率和容易程度。

BigQuant金融市场数据因子平台以及AI量化策略平台(PC端),验证换手率因子组成的AI量化交易策略。

![](/wiki/api/attachments.redirect?id=83ec82a2-6c14-4425-8bae-05b216f7

更新时间:2024-06-07 10:48

波动率公式及使用技巧

波动率(Volatility)是金融市场中用于衡量资产价格随时间变化的程度。波动率越高,表示资产价格的变动幅度越大,风险也越高。在股票市场中,波动率通常以历史波动率(基于过去的价格变动)或隐含波动率(基于期权定价)来衡量。

BigQuant金融市场历史数据因子平台以及AI量化策略编写平台(PC端),可以验证波动率指标因子组成的量化策略。

![](/wiki/api/attachments.redirect

更新时间:2024-06-07 10:48

分页第1页第2页第3页第4页第5页第6页第7页
{link}