金融市场

金融市场是全球经济活动的核心,它是一个复杂的系统,通过无数种交易和活动,将全球的投资者、企业、政府和其他实体紧密地联系在一起。金融市场主要的功能是促进资金的有效流动和使用,提供了资金需求和供应之间的桥梁。它允许投资者通过股票、债券、期货、期权和其他金融工具进行投资,从而为企业和政府提供必要的资金。 金融市场具有高度的流动性和透明度,使得参与者能够迅速、准确地了解市场情况和资产价格的变化。它的效率和健全性直接影响着整个经济系统的稳定和增长。此外,金融市场也是评估经济风险和决定资本成本的关键场所。 然而,金融市场也充满了风险和挑战。市场波动、信息不对称、信用风险等问题都可能对投资者和市场整体造成损失。因此,有效的监管和风险管理对于维护金融市场的健康和稳定至关重要。 总的来说,金融市场是现代经济的心脏,它通过促进资本的流动和分配,推动着全球的经济增长和发展。

生成对抗网络:用于金融交易策略、和组合优化

Generative Adversarial Networks for Financial Trading Strategies Fine-tuning and Combination

作者:Adriano Koshiyama, et al.

出处:Quantitative Finance, 2020-09-01

摘要

系统交易策略是分配资产以优化特定绩效的算法程序。为了在竞争激烈的环境中获得优势,分析师需要适当地微调策略,或者发掘如何通过创造新的alpha以组合弱信号。已经有多种方法对微调和组合这两个方面进行了广泛研究,但是新兴技术,例如生成对抗网络,也会对这些方面产生

更新时间:2023-06-13 06:53

230607 花隐林间

{{membership}}

https://bigquant.com/codeshare/0527a8c8-9944-4c74-b845-2068dce50bd1

\

更新时间:2023-06-11 13:36

DeepAlpha短周期因子系列研究之:StockRanker在量化选股中的应用

引言

在BigQuant平台(www.bigquant.com)上线的第一天,我们从互联网搜索引擎领域借鉴了PageRank算法引入到金融市场,提出了StockRanker算法,5年时间悄然过去,时间证明了StockRanker算法在金融量化选股领域的有效性。 今天,我们对DeepAlpha-StockRanker进行简单介绍。

什么是DeepAlpha

Alpha在金融市场有特定含义,表示跑赢市场的超越收益,Deep借用深度学习(Deep Learning)“深度”一词,因此DeepAlpha指通过人工智能深度学习的

更新时间:2023-06-07 08:37

重要通知


\

更新时间:2023-06-03 05:45

2023.5-直播代码-惊恐收益因子研究

{{membership}}

https://bigquant.com/experimentshare/ff206779bb0f4851ac0fede5acb195e6

\

更新时间:2023-05-31 07:19

AI量化策略中如何选择合适的因子

问题

AI量化策略中如何选择合适的因子

视频

https://www.bilibili.com/video/BV1J24y1f7mJ/?spm_id_from=333.999.0.0

PPT

{{membership}}

[/wiki/static/upload/42/4267409e-a9f4-42db-bb79-1321ba5e4c59.pdf](/wiki/static/upload/42/4267409e-a9f4

更新时间:2023-05-06 07:23

QuantChat-小白如何学习量化投资

• 点击新建对话,创建一个新对话


{w:100}


• 点击输入框,开始与QuantChat交流


{w:100}


• 您可以直接输入以下对话


![{w:100}](/wiki/api/attachments.redirect?id=df515aaf-cef1-460

更新时间:2023-05-04 02:33

BigQuant的ChatGPT怎么使用?



\

更新时间:2023-05-04 02:23

ChatGPT

%%BigQuant_ChatGPT

更新时间:2023-05-04 02:21

滚动训练不成功,ix属性问题

https://bigquant.com/experimentshare/0e3ee03644f24afb883e6acd26c8bca2

\

更新时间:2023-04-28 09:53

期货return因子提取不了

https://bigquant.com/experimentshare/21f522493cc941129b94cfed5027f98a

\

更新时间:2023-04-11 07:37

如何高效、优雅地进行高频策略回测?

今天与大家探讨高频策略的回测框架。高频策略的研发,有两个显著的特点: 一是数据量大,与日频相比,分钟频率就是百倍的数据量, 到秒级别更达到上千倍的差异。 二是对交易细节敏感,回测系统要尽可能去模拟真实交易的情形,甚至要比真实交易更严格,这样研发出来的高频策略才有实盘的价值。所以高频策略要考虑的细节很多,决策时间点,成交价,手续费,流动性等。细节考虑的不到位,策略回测和实盘交易就会差异很大,降低策略研发的价值和效率。 如何在大数据量前提下,尽可能的将细节考虑到位,就是高频策略回测系统的挑战,也就是严谨和高效的权衡。

下面和大家一起构建一个秒级别的策略回测框架。 一般来说,回测框架会包含以下几个

更新时间:2023-04-10 09:18

行业轮动量化策略【源码】

本文是行业轮动策略的源码。

策略案例


https://bigquant.com/experimentshare/73f9656a0f5645c8909423df662357ff

\

更新时间:2023-03-19 04:32

龙头战法实盘+AI-量化大赛NO.3-中证150增强[策略分享]

  • {w:100}{w:100}{w:100}

{w:100}{w:100}{w:100}

谢谢小Q, 感谢BQ。四周年快乐\~

昨天收到了小Q寄来的礼物,好开心啊,双11不用我自己去买了。。。。一如既往的清新风。我已经猜到了,上一年是保温杯,今年是茶壶,下一年可不可以送包枸杞 ,

更新时间:2023-03-07 12:00

帮我写一篇作文

欢乐过兔年

%%BigQuant_ChatGPT

帮我写一篇作文

更新时间:2023-02-10 06:38

帮我写一份简历

\

更新时间:2023-02-10 06:37

BigQuant_ChatGPT

你好

更新时间:2023-02-10 06:37

如何推八字

如何推八字

更新时间:2023-02-07 10:55

入坑量化一年总结贴

自我介绍

策略盈亏

在介绍自己之前,先看一下入坑一年写的一些策略吧,毕竟在这里策略的效果比名字有用。

{w:60}

{w:60} ![{w:60}](/wiki/api/attachments.redirect?id=6203646c-9158-4faa-b266-374923

更新时间:2023-01-19 12:54

BigQuant支持数字货币的回测吗

我自己研究了半天,发现回测模块并不支持自己导入回测数据,想请教一下如果想做数字货币的回测应该怎么做?

更新时间:2022-12-20 14:20

板块因子和上市时间策略

策略案例

https://bigquant.com/experimentshare/5c76d204e7f146a4b2840f9b47a9d732

\

更新时间:2022-11-20 03:34

筹码理论的探索-筹码分布计算的实现

https://bigquant.com/experimentshare/a4e89b23c2de4c56b6534136169d13c1

\

更新时间:2022-11-20 03:34

用传统框架测试机器学习-GBDT算法

策略案例

https://bigquant.com/experimentshare/44cc116a1dad4c37983b9be35da208ee

\

更新时间:2022-11-20 03:34

优秀开发者分享


\

更新时间:2022-11-03 08:32

低频量化策略的胜负博弈 华泰证券-20220624

摘要

量化策略都在捕捉市场规律,低频策略应当重视收益来源和逻辑支撑

所有量化模型都在试图捕捉市场的规律,在训练模型的过程中,不可避免需要去拟合样本内的一些场景。规律是金融市场客观存在的,还是从样本数据挖掘所得到的,是所有量化模型都需要直面的问题。高频策略和低频策略的不同特征使得策略评价层面存在差异,低频策略的有效性评判所需时间更长、难度也更大,甚至每一次投资决策的结果都可能是胜负的关键。因此低频策略的收益来源和逻辑支撑显得尤为重要。常见的低频择时策略可能在匹配资产背后的特定频谱,或存在大级别行情贡献了短期收益。

高频与低频策略的天然差异导致策略有效性评判层面有不同的考量

更新时间:2022-10-24 10:30

分页第1页第2页第3页第4页第5页第6页第7页第8页
{link}