更新时间:2024-06-07 10:55
2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
交易引擎回测模块的功能是实现用户的交易逻辑
策略逻辑与交易逻辑的对比:
策略逻辑 | 交易逻辑 |
---|---|
使用什么样的数据\n使用什么 |
更新时间:2024-06-07 10:55
如何将回测模块设置成T+2开盘买入,T+3尾盘卖出(目前我们支持的是T+1买入)
https://www.bilibili.com/video/BV1bT411u71x?share_source=copy_web
[https://bigquant.com/experimentshare/157e67091c1b4534b7ea1f0a4255a38b](https://bigquant.com/experi
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
备注:本策略含有未开放的数据,故克隆之后无法运行。
{{membership}}
https://bigquant.com/codeshare/b6e80d6b-f5e0-4778-97cf-77fcadb7b488
\
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
【此文档为旧版】 相关新版文档参考:
https://bigquant.com/wiki/doc/ai-rq8QOC2fDb
https://bigquant.com/experimentshare/16571b942a8a4a92a4914c15f65d0883
\
更新时间:2024-06-07 10:55
波动率(Volatility)是金融市场中用于衡量资产价格随时间变化的程度。波动率越高,表示资产价格的变动幅度越大,风险也越高。在股票市场中,波动率通常以历史波动率(基于过去的价格变动)或隐含波动率(基于期权定价)来衡量。
BigQuant的金融市场历史数据因子平台以及AI量化策略编写平台(PC端),可以验证波动率指标因子组成的量化策略。
通常用于描述股票或其他证券在特定时间内的交易活跃程度。金融市场中,换手率可用于衡量股票的流动性,即股票在市场上买卖的频率和容易程度。
BigQuant的金融市场数据因子平台以及AI量化策略平台(PC端),验证换手率因子组成的AI量化交易策略。
模型来分析数据和预测市场行为,并通过计算机算法预设的规则和模型自动执行交易。
模型来分析数据和预测市场行为,并通过计算机算法预设的规则和模型自动执行交易。(文末含量化核心资源)
数据分析
历史数据分析:通过分析历史价格、成交量等数据来预测市场趋势。
实时市场数据:收集实时交易数据,对市场
更新时间:2024-06-07 10:48
金融交易是指在金融市场上买卖金融工具的过程,例如股票、债券、衍生品(如期货和期权)、货币以及其他金融资产。这些交易可以在各种平台上进行,包括交易所、场外市场(OTC)和电子交易平台。金融交易的主要目的是为了投资、对冲风险或从市场价格变动中获利。
\
一般可以大致分为以下几类:
更新时间:2024-06-07 10:48
量化交易软件是一种专门设计用于执行量化交易策略的软件工具,广泛应用于金融市场。这种软件使投资者能够运用数学和统计方法,自动化地进行交易决策和执行。(tips:文末含所有量化交易软件平台入口及核心工具)
量化交易软件基于预设的算法和模型,进行市场分析、决策制定和交易执行。它通常包括数据分析、模型构建、回测、风险管理和自动化交易等功能。量化交易的核心是将投资策略数学化,使交易过程标准化和
更新时间:2024-06-07 10:48
在AIStudio中编写的策略,不论是可视化版本还是代码版本,使用的数据来源都是BigQuant的DAI数据平台
DAI数据平台由两个部分组成:
数
更新时间:2024-05-28 06:37
freestyle996+如何运用股票标注的方法对1-3日内上涨的股票进行标注?
https://www.bilibili.com/video/BV1uP4y1R7kh/?spm_id_from=333.999.0.0
[https://bigquant.com/experimentshare/0a4bb333c1bb4f4e91d7701a3538f6f4](https://bigquant.co
更新时间:2024-05-21 09:10
本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
[https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7c588b8d](https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7
更新时间:2024-05-20 06:33
更新时间:2024-05-20 02:37
了解量化投资是成为宽客道路上的一块重要的敲门砖。本文从量化投资定义、量化投资特点、量化投资优势及量化投资实践流程四方面简要为大家介绍量化投资相关知识。
量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。
提起量化投资,就不得不提量化投资的标杆——华尔街传奇人物詹姆斯·西蒙斯(James Simons)。视频地址:“[横扫华尔街的数学家](https://bigquant.c
更新时间:2024-05-20 02:24
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 02:15
更新时间:2024-05-20 02:09
算法交易起源于上世纪中叶的配对交易
历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动方向。
配对交易逐渐成熟,发展成后来的算法交易。随后算法交易策略慢慢在华尔街流传开来并被广泛使用,同时也带来了非常可观的盈利。原来在摩根士丹利从事配对交易的研究员,后来逐渐成为如大卫·肖、詹姆斯·西蒙斯这类明星基金经理手下的精英,算法交易的“黑盒子”便由此诞生。
随着计算机的广泛普及,华尔街各大
更新时间:2024-05-20 02:09