数据分析

在金融领域,数据分析是一项至关重要的能力,它利用先进的统计技术和复杂的算法,对大量的、多样化的金融数据进行深度挖掘和精准解读。这种分析不仅涵盖了历史数据回溯,以洞察过去的市场动态和资产表现,更包括对未来市场趋势的预测。通过数据分析,金融机构能够更准确地评估风险、制定投资策略、优化产品定价,并实现客户关系管理的个性化。在数字化时代,数据分析已成为金融决策的核心,为从业者提供了在不确定性中寻求确定性的强大工具。

如何推八字

如何推八字

更新时间:2023-02-07 10:55

获取到的数据连接重复的疑问

https://bigquant.com/experimentshare/3399e83df2ea49e4ae1378ed0c9378db

\

更新时间:2023-01-11 05:55

用k-近邻分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7f7021993a9f40149189be939e15c882

\

更新时间:2023-01-03 07:44

K近邻分类算法选股,提示错误

问题

{w:100} {w:100}请问这个错误是什么原因

解答

筛选过后的classes_prob_0没有数据,则索引[0]找不到相关的数据

更新时间:2022-12-20 14:20

训练时报数据错误,但数据有115478 行,应该是够的呢

https://bigquant.com/experimentshare/711ca5b92c11435ead022cd39c287f17

\

更新时间:2022-12-20 14:20

python如何可以获取股票L2行情

python究竟怎么可以获取level2行情呢?比如百度、新浪、搜狐、CSDN等都有教程还有说明,同时还有提供一些常见的股票L2接口,包括许多模拟股票交易系统也提供了数据,但这些获取股票数据的方法并不像通过python那样方便。那么,如何通过python实现股票L2接口呢?

以下有两种情况说明:

(1)你有自己的证券商及客服专员;

在这种情况下,个人直接打电话给交易账户的证券期货供应商客户服务专员,获取CTP数据接口信息。CTP是指根据要求,进入期货公司的交易程序必须经过穿戴认证。简单地说,它是在期货公司提供的模拟环境中完成指定

更新时间:2022-12-08 05:44

模型

模型板块包含了AI算法模型,多因子模型等一些研究内容。

更新时间:2022-12-06 14:42

筹码理论的探索-筹码分布计算的实现

https://bigquant.com/experimentshare/a4e89b23c2de4c56b6534136169d13c1

\

更新时间:2022-11-20 03:34

获取港股历史交易信息

策略案例

https://bigquant.com/experimentshare/5f6ffc8016fd47deb6ef696ca7286b35

\

更新时间:2022-11-20 03:34

ESG量化:可持续投资的量化方法

The Quantitative Approach for Sustainable Investing

作者:Sorensen E,Chen M, Mussalli G.

出处:The Journalof Portfolio Management,2021-08

摘要

ESG(也称为环境、社会和治理)投资目前引起投资界的浓厚兴趣。在本文中,作者考虑了与 ESG 投资相关的突出挑战以及量化方法如何解决这些挑战。与可持续投资的基本方法相比,作者认为定量方法有几个优点:这些方法可以建立并扩展现代投资组合理论的庞大分析工具箱,将投资者偏好纳入投资组合构建;这些方法可以利用最近的数据

更新时间:2022-11-02 09:33

Python for Quants - 用于量化投资的Python

参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python

更新时间:2022-10-10 01:02

量化研究:投资决策的起点 海通证券_20180716_

正文

/wiki/static/upload/25/259b1aaa-df16-4ed2-abd6-8ad67bba7fb7.pdf

\

更新时间:2022-08-31 08:06

听海外高频交易专家讲解美国的高频交易


/wiki/static/upload/e0/e01b0948-5f18-481e-ae7b-9f8748add087.pdf

\

更新时间:2022-02-21 09:13

【精品】全网人工智能机器学习免费资源汇总清单

作者:Robbie Allen
编译:BigQuant

早在21世纪初,我在编写关于网络和编程的书的时候,我就发现,互联网是一个很好的资源,但是它还不完善。 那时,博客已开始流行。但是YouTube还不是很普遍,同样Quora,Twitter和播客用户也很少。十年过后,我一直在潜心钻研人工智能和机器学习,局面发生了翻天覆地的变化。互联网上现在有非常丰富的资源——当你要寻找选择你想要的资源时,你很难抉择你应该从哪里开始(和停止)!

![微信图片_20180306160704|690x277](/community/uploads/default/original/2X/5/

更新时间:2021-11-11 07:27

在策略回测中,如何查看中间变量的值?

之所以需要查看中间变量的数值是因为我们有时在编写策略、策略调试中需要检查中间变量的数值是否正确,具体方法见下:

https://bigquant.com/experimentshare/318dd5e24d3a4578b858f4a1226aca3b

\

更新时间:2021-08-24 05:46

用线性随机梯度下降-回归算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7dcb3fe1da07466aa334e3c202a7704f

\

更新时间:2021-07-30 08:12

用线性-分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/5c5e31cf67c94de099b00aeab9676e48

\

更新时间:2021-07-30 07:26

WorldQuant 101 Alpha因子构建及因子测试

作者:bigquant
阅读时间:5分钟
本文由BigQuant宽客学院推出,难度标签:☆☆☆

导语

本文目的是介绍如何使用bigexpr表达式对WorldQuant公开的101个alpha进行因子构建,并进行因子测试。

一、背景介绍

根据WorldQuant发表的论文《101 Formulaic Alphas 》 669 ,其中公式化地给出了101个alpha因子。与传统方法不一样的是,他们根据数据挖掘的方法构建了101个alpha,据说里面80

更新时间:2021-04-23 07:08

分页第1页第2页第3页第4页第5页
{link}