• 点击新建对话,创建一个新对话
• 点击输入框,开始与QuantChat交流
• 您可以直接输入以下对话
:
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
\
更新时间:2025-02-27 02:34
投资组合优化是指应用概率论与数理统计、最优化方法以及线性代数等相关数学理论方法,根据既定目标收益和风险容许程度(例如最大化收益,最小化风险等),重新调整组合权重的过程,它体现了投资者的意愿和投资者所受到的约束。 投资组合管理者在设定了投资收益预期、风险预算、相关约束和风险模型之后, 依托优化器得到资产配置最优化结果。
由于不同的约束条件、目标函数,会形成不同的优化器。我们可以通过使用组合优化器,进行一段时间的回测,测试整个投资过程,不同的组合优化的方式会带来哪些细微的变化,找到更加符合自身需求的仓位分配方案。
组合优化器支持对股票进行投资优化,目前支持的目标函数如下:
更新时间:2025-02-27 02:34
本文介绍如何对一个回测结果进行深入分析。
我们先构建一个可视化AI策略,如下所示。
回测结果一般指策略运行完毕之后输出的能够综合反映策略效果的综合图表,如下所示:
可以看出,回测结果包括收益概括、交易详情、每日持仓、
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
\
更新时间:2025-02-27 02:34
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|
更新时间:2024-06-11 03:20
本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb
利用市场信息进行量化投资主要涉及以下步骤:
更新时间:2024-06-07 10:55
多因子选股如何筛选有效因子
参考研报:
因子分析参考:
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
【此文档为旧版策略】具体可参考新版文档:
https://bigquant.com/wiki/doc/103-ai-LpsqDhu8mG
https://bigquant.com/experimentshare/dd9cff01459a41f9be40d7e660164795
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55