本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/68b5d7cfac264dbda781c1fbcc6a4880
\
更新时间:2024-05-20 02:09
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/0f3871389f5846009ba425fe066d03b2
\
更新时间:2024-05-20 01:07
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/5z65lqo5y2p5pw055qe6ywn5a55lqk5pit-6x1P1362eJ
[https://bigquant.com/experimentshare/6b05d7bd134e420387acfa25c37b283f](https://bigquant.co
更新时间:2024-05-17 09:23
本文挑选了著名的风险结构模型进行介绍,具体的细节并没有深入展开,旨在抛砖引玉,了解Barra对于风险结构模型的思维方式和理念。
相似的资产会有相似的回报,这是多因子模型的基本假设。由于某些特定的原因(因子),资产会表现的十分类似,例如价量变化、行业、规模或者利率变化。多因子模型就是为了发掘这些因子,并且确定收益率随因子变化的敏感程度。通常来说,多因子模型包括了宏观因子模型、基本面因子模型和统计因子模型。这几种模型在分析不同的大类资产风险收益的时候也有不同的效果。
单个资产的多因子模型可以表示成:
![{w:100}
更新时间:2024-03-03 10:49
更新时间:2024-01-09 02:04
更新时间:2023-08-21 10:56
本篇报告是投资组合优化系列的第二篇,主要围绕组合换手展开,内容分为影响因素、控制方法和实测分析,着重探析组合换手的根源、权衡与效率。
通过量化投研流程、主观设定层级和权益基金特性这三种视角,讨论组合换手受到的影响。量化投研流程中,优化阶段以直接设置换手约束为主;信号阶段会受阿尔法时间特性影响;交易阶段会对成本建模并平衡换手与费率。主观设定层级中,由简至繁、由先及后,依次为监管合规风控、交易费用、优化求解以及阿尔法信号。权益基金特性方面,统计发现基金换手与基金规模、投资方法、投资风格和市场环境存在明显关联。
在众多影响因素
更新时间:2023-06-13 06:53
2008年金融危机的爆发,使得风险均衡的理念迅速在资产管理实务界流行开来。那些致力于通过分散化投资来获取绝对收益的基金经理,纷纷将其作为资产配置的核心方案。但是,诸多实际案例也发现,纯粹的、不加任何杠杆的风险均衡策略很难产生具有吸引力的收益表现。为此,越来越多的研究者试图在经典的风险均衡策略中加入一些主动的管理,本文也是其中的一个尝试。首先,通过风险均衡策略给出中性配置,随后在相对中性组合一定跟踪误差的约束下,采用Black-Litterman模型完成资产配置。
首先,本文以国内资产的例子分析风险均衡组合的特征。为了和传统的分散化
更新时间:2023-06-13 06:53
\
更新时间:2023-06-13 06:50
\
更新时间:2023-05-17 08:45
最近的一项研究表明,在所有资产超过20亿美元的企业养老金基金中,超过80%拥有超过10位投资经理,在所有资产超过5000万美元的基金中, 不到三分之一的基金拥有一名投资经理。许多雇佣多名经理的基金只关注经理选择的过程。直到现在,一些基金才开始认识到,它们必须制定一种界定基金经理资产管理能力的方法, 并对构成投资管理过程的各个环节——投资基准、市场时机和证券选择——的绩效贡献进行评估。基准、时机和证券选择的相对重要性只有在我们有一个清晰和完整的方法 将收益归因于这些因素时才能确定。本文根据Brinson的理论研究投资基准、市场择时和证券选择对投资组合总收益的影响。我们的目标是确定
更新时间:2023-03-23 08:21
模型板块包含了AI算法模型,多因子模型等一些研究内容。
更新时间:2022-12-06 14:42
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
基金相似度问题在学界和业界都有相关的研究和讨论,但这些研究中关于比较不同计算方法的差异以及基金相似度在实际投资中的应用探讨并不多。
本篇报告总结了业界和学界常见的几类基金相似度算法,提出几类应用场景,并尝试在一些实际应用场景下进行探讨和比较。
从基金相似度的计算方法来看,余弦相似度、欧式距离等方法各有优劣。基金相似度的衡量应该取决于投资者对于“基金相似”的定义以及应用场景,例如是选择定义“基金相似”为持仓结构的形似,还是持仓权重的神似。
通过计算基金与其他基金的相似度,找到与限购基金最相似且处于正常申购状态的基金。从结果来
更新时间:2022-10-24 09:56
G-Resarch作为ICML 2022的钻石赞助商,其研究人员和工程师参加了今年在美国巴尔的摩举行的会议。研究人员收集了他们最喜欢的2022年ICML论文并推荐给大家。
首先是来自机器学习工程师Casey Haaland的推荐,我们可以发现,机器学习工程师关注的论文更偏模型的结构及训练方法优化。
**Fast Convex Optimizat
更新时间:2022-10-11 02:31
Renaissance Technologies文艺复兴科技公司交易策略揭秘记录!该短片中详细介绍了文艺复兴科技公司多年来如何开发各种交易策略,从早期的均值回归到利用内核方法等等。
https://www.bilibili.com/video/BV1ae4y1f7Em
\
更新时间:2022-10-10 12:50
分享头部量化私募团队、策略、深度资料等
\
更新时间:2022-10-10 09:45
来自:Finance Research Letters 48 (2022)
作者:Matthias X. Hanauera, Marina Kononovab, Marc Steffen Rappb
标题:Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets
股票基本面分析有效吗?分析师应该如何得出股票基本面价值?虽然理论文献已经开发了贴现现金流模型和其他高度程式化的基础估值模型,但BG(2
更新时间:2022-10-10 03:48
参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python
更新时间:2022-10-10 01:02
《Deep Learning for Portfolio Optimization》
张子豪、斯蒂芬·佐伦、斯蒂芬·罗伯茨牛津曼数量金融研究所,牛津大学
我们采用深度学习模型直接优化投资组合夏普比率。我们提出的框架规避了预测预期的要求回报并允许我们通过更新模型直接优化投资组合权重参数。我们交易交易所交易基金,而不是选择单个资产(ETF) 的市场指数以形成投资组合。不同资产类别的指数显示强大的相关性和交易它们大大减少了可用的范围可供选择的资产。我们将我们的方法与各种算法进行比较结果表明我们的模型在测试中获得了最佳性能期间,从 2011 年到
更新时间:2022-10-09 10:31
文献来源:Jennifer Bender, Jerry Le Sun and Rick Thomas, Asset Allocation vs. Factor Allocation – Can We Build a Unified Method?[J] The Journal of Portfolio Management, 2018, 45 (2) 9-22
推荐原因:近60年间,股票和债券等资产一直是多元化投资组合的主要基石。长期以来,投资者普遍认为,对不同类别的资产进行分散投资足以为组合带来多元化投资的裨益,但近期在市场大幅下挫过程中,对不同类别资产进行分散投
更新时间:2022-10-09 10:01
净值化时代,为满足客户的绝对收益需求,多资产配置是一种必然思路。CTA作为一类不同于股票、债券等传统资产的另类资产,策略本身的运作手段丰富,历史净值表现优异,同时众多优异的CTA产品回撤控制较好,收益风险比极佳。
从多资产配置视角看,对于CTA策略,首先我们需要明了的是,什么样的宏观及市场环境下,CTA策略具有较好的性价比,因为CTA策略也有小年和大年,当环境不利时,即使表现再好的CTA策略,可能收益也不及中性、股票多头等其他策略,此时从自上而下的视角看,最优的选择应该是增配其他更优的资产,而不是在CTA策略中“火中取栗”。这其实就是CTA策略的择时问题。本文中,我们构建了一套
更新时间:2022-10-08 10:30
深度了解易方达量化投资团队,大咖解读量化投资趋势与方法
https://www.bilibili.com/video/BV1te4y187ig
\
更新时间:2022-09-16 16:56