Recent Advances in Reinforcement Learning in Finance
Ben Hambly-牛津大学数学研究所
Renyuan Xu-南加州大学工业与系统工程系
Huining Yang
2021 年 12 月 10 日
随着数据量的不断增加,金融行业的快速变化已经彻底改变了解决了数据处理和数据分析技术,带来了新的理论和计算挑战。与经典随机控制理论和其他分析应用相比,解决严重依赖模型假设的财务决策问题的方法,强化学习(RL)的新发展能够充分利用大量减少模型假设的财务数据,并改进复杂
更新时间:2021-12-13 07:43
研报标题:A Gentle Introduction to Graph Neural Networks
发布时间:2021年
作者:Benjamin Sanchez-Lengeling、Emily Reif、Adam Pearce、Alexander B. Wiltschko
这篇文章是关于图神经网络的两篇论文之一。看一看理解图上的卷积,了解图像上的卷积如何自然地概括为图上的卷积。
图表无处不在;现实世界中的对象通常是根据它们与其他事物的联系来定义的。一组对象,以及它们之间的联系,很自然地被表示为一个图形。研究人员已经开发了十多年的基于图数据的神经网络(称为图神经网络,或
更新时间:2021-11-30 05:44
多因子选股模型的整个投资流程包括alpha模型的构建,风险模型的构建,交易成本模型的构建,投资组合优化过程以及组合业绩的归因分析。从国内市场上已公开的量化模型看,采取的大多是打分法选股或者行业、市值分层构建组合,这种组合构建方式缺乏对风险和alpha的精确控制,最终组合可能偏离预定的投资目标
多因子结构化风险模型(如Barra, Axioma)目前仍然是市场上的主流风险模型。股票收益率的样本协方差矩阵面临的主要问题是:在股票数量N超过时间样本区间T时,协方差矩阵不可逆,并且包含着较大的估计误差,这些都会严重影响到投资组合优化,使得优化器给出错误的权重分配。
根据Ledoit and Wo
更新时间:2021-11-22 07:53
主题:The Impact of AI to Global Asset Managers: The Responses and Adoptions
演讲人:关子敬 先生 Kevin Kwan 彭博亚太区量化及数据科学专家
谢谢Big Quant的邀请,今天所有策略的绩效仅作交流的用途展示概念,投资人如果对策略本身有兴趣的话,请在我们网站下载白皮书或是与我们的客户经理联系。
更新时间:2021-09-29 03:51
更新时间:2021-09-08 03:03
更新时间:2021-07-30 08:12
更新时间:2021-07-30 08:10
更新时间:2021-07-30 07:26
更新时间:2021-07-30 07:26
更新时间:2021-07-30 07:26
更新时间:2021-07-27 10:57
更新时间:2021-04-22 03:55
更新时间:2021-04-22 02:47
更新时间:2021-04-22 02:46
当前应用于NLP领域的Transformer,结构过于庞大,并不适用于股票数据(开盘价,收盘价,最高价,最低价,等)这样的时序数据,因此,本文提出一种简化的适用于股票数据的Transformer结构,其根据时间嵌入的思想构建,能很好的应用于量化选股中。下面以一个例子来介绍用于股票数据的Transformer体系结构,以及
更新时间:2021-02-03 07:05