投资组合优化

投资组合优化是从金融角度出发,通过多元化的资产配置以降低风险并寻求最大化收益的过程。它涉及对不同资产类别的深入理解和前瞻性市场分析,以确定最佳的投资组合权重。通过现代投资组合理论,如马科维茨投资组合理论(MPT),投资者可以利用资产的历史回报和波动率数据,量化不同资产间的相关性,从而构建出具有理想风险-收益平衡的投资组合。在优化过程中,还需考虑投资者的风险承受能力、投资期限和市场预期等因素。持续监控和定期调整是优化投资组合不可或缺的部分,以确保投资组合与市场环境和投资者目标保持一致。

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在量化投资中应用的具体方法解析

AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅

更新时间:2025-07-01 07:35

从均值方差到有效前沿(代码)

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/68b5d7cfac264dbda781c1fbcc6a4880

\

更新时间:2025-07-01 07:35

Python基础入门


\

更新时间:2025-07-01 07:35

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:20

使用bigexpr表达式引擎开发AI策略

策略案例

https://bigquant.com/experimentshare/05251c753111424eaff32648838ac24f

\

更新时间:2025-07-01 07:17

LSTM Networks应用于股票市场之Sequential Model

策略案例


https://bigquant.com/experimentshare/8594992a1d9345d98cbe949eb6297067

\

更新时间:2025-07-01 07:09

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2025-07-01 07:03

AI量化交易常识

AI量化交易重要常识

  1. 数据质量与完整性:高质量、准确、全面的数据是AI量化交易成功的关键。
  2. 模型过拟合:避免过度拟合历史数据,这可能导致未来性能下降。
  3. 市场效率:理解市场效率和其对交易策略性能的影响。
  4. 算法复杂性:更复杂的算法并不总是更好,简单有效往往更为重要。
  5. 风险管理:制定严格的风险管理策略以保护资本。
  6. 交易成本

更新时间:2025-07-01 06:46

从均值方差到有效前沿(文字版)

这篇文章的主要目的是介绍有效前沿这个理论工具和分析框架。我们由均值方差分析展开,逐步推演到有效前沿。然后,我们又说到有效前沿在投资或者量化中的应用场景,最后我们也总结了有效前沿的一些问题,尤其是敏感性问题。在教程中,特意加入了一些实验代码,可以让大家在阅读的过程中有更好的理解。

有效前沿

说到有效前沿(有些叫效率边界),就要提到马科维茨的投资组合理论了。

首先介绍下它的三大假设:

  • 单一投资期,比如一年
  • 流动性很高,无交易成本
  • 投资者的选择基于最优均值方差

于是,我们可以开始推导有效前沿,在这之前,我们先约定一些数学符号:

  • rf:无风险利率
  • μ:风险

更新时间:2025-06-30 08:43

Barra风险结构管理模型

导语

本文挑选了著名的风险结构模型进行介绍,具体的细节并没有深入展开,旨在抛砖引玉,了解Barra对于风险结构模型的思维方式和理念。


多因子模型

相似的资产会有相似的回报,这是多因子模型的基本假设。由于某些特定的原因(因子),资产会表现的十分类似,例如价量变化、行业、规模或者利率变化。多因子模型就是为了发掘这些因子,并且确定收益率随因子变化的敏感程度。通常来说,多因子模型包括了宏观因子模型、基本面因子模型和统计因子模型。这几种模型在分析不同的大类资产风险收益的时候也有不同的效果。

实现原理

单个资产的多因子模型可以表示成:

![{w:100}

更新时间:2025-06-30 08:42

HeatMap - 热力图

接口

对于HeatMap(热力图)的 _type=”heatmap” 和 series_options:

bigcharts.Chart(
    ... 其他参数
    # 【设置图表类型】图表类型,具体参考各类型图表
    type_ = "heatmap",
    
    # 热力图中y传入的数据轴必须是两项,第一项表示的是y轴坐标轴的刻度数据第二项表示的

更新时间:2025-04-24 04:04

Dai读取高频因子构建一个简单的多因子策略

https://bigquant.com/codeshare/5cc967b1-9dd1-45ef-a021-3194dd0c1e4f

\

更新时间:2025-04-24 03:44

Dai读取高频因子构建一个简单多因子策略

https://bigquant.com/codeshare/3b5c66d6-ed5b-46a0-8dc6-3a48cc76a482

\

更新时间:2025-04-24 03:43

A股量化择时研究报告:金融工程,战略做多不变-广发证券-20200329

/wiki/static/upload/0d/0dcd4d85-27e0-494c-85a8-911e809ac2bc.pdf

\

更新时间:2025-04-24 03:36

A股量化风格:小盘反转风格显著,价值风格修复-广发证券-20200330

/wiki/static/upload/a9/a9f67316-1655-4c37-83a6-daa476619adf.pdf

\

更新时间:2025-04-24 03:36

华泰金工量化择时系列:牛熊指标在择时轮动中的应用探讨-华泰证券-20200407

/wiki/static/upload/73/7387f8bc-3d1b-4b37-ad6d-7e0d5ddcf4b2.pdf

\

更新时间:2025-04-24 03:36

控制每日仓位的一个例子

策略案例

https://bigquant.com/experimentshare/0062e380d1b5400ca5fe4522ac948649

\

更新时间:2025-04-24 03:35

指定概念板块过滤

策略案例

https://bigquant.com/experimentshare/0f5a773d39184d73bec6520dccad7ee8

\

更新时间:2025-04-24 03:34

运用风险平价策略进行投资

运用风险平价策略投资

风险平价策略的产生及概念

产生:雏形是Bridgewater的“全天候”,要建立一个在任何经济环境下都能表现不错的资产组合;但风险平价这一概念出现较晚,产生于2006年;2008年以前,风险平价策略还主要集中在股票、债券、大宗商品等传统的资产类别,仅有少数人利用了高收益债券、投资级债券及新兴市场债券的利差。2008年,AQR首次推出了其他风险因子otic/Alternative Risk Factor),将对冲基金等作为该策略资产组合的一部分。

概念:基于目标风险水平,有多种e资产构成投资组合,并给组合中的不同资产分配相同的风险权重的一种投资策略。

更新时间:2025-04-24 03:23

策略高级设置


\

更新时间:2025-04-24 03:20

R-breaker策略

https://bigquant.com/experimentshare/6202fc78d2a44a509a5e422b68890491

\

更新时间:2025-04-24 03:20

AI选股策略_概念过滤

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-04-24 03:20

双均线基金策略-股票日频

https://bigquant.com/experimentshare/5277de40609d4fffa7bbe6df2e5b1231

\

更新时间:2025-04-24 03:20

因子过滤

https://bigquant.com/experimentshare/b6bb3c84df0c4da5bb0b495bc52feb06

\

更新时间:2025-04-24 03:20

可转债双低策略-可转债日频

https://bigquant.com/experimentshare/d845df2c36424de989e719fe3af29805

\

更新时间:2025-04-24 03:20

分页第1页第2页第3页第4页第5页第6页
{link}