夏普比率

夏普比率(Sharpe Ratio)是金融领域中用于衡量投资风险调整后表现的重要指标。它由威廉·夏普于1966年提出,用于量化投资者在承担每单位风险时所获得的超额回报率。夏普比率的计算公式为(回报率 – 无风险利率)/ 标准差,其中,回报率表示资产的平均收益,无风险利率通常与国债收益率相近,而标准差则代表资产收益的波动性或风险。 夏普比率越高,说明在相同风险水平下,投资策略所获得的回报越高,反之则越低。此指标不仅为投资者提供了一个量化工具来评估投资组合的风险与回报之间的平衡关系,还有助于比较不同资产或策略之间的性能。因此,夏普比率在金融决策、资产配置和绩效评估等方面具有广泛应用。

AI StockRanker耍单票策略

导语

在之前的版本里,很多用户喜欢开发每日换仓、仓位集中度高的AI StockRanker策略,无需编写sql代码,因此本教程给出这样的一个策略实现,方便用户在此基础上根据自己需求调整策略。

本策略绩效

本策略年化收益74%,夏普比率2.5,最大回撤不到-8.5%,整体绩效不错,详细代码见文末,可直接克隆,查看源码。

\

本策略示例特点

每日轮动调仓

之前的模版,以线性策略为主,换仓都是定期轮动,

更新时间:2025-07-01 07:55

从均值方差到有效前沿(代码)

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/68b5d7cfac264dbda781c1fbcc6a4880

\

更新时间:2025-07-01 07:35

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:20

用随机森林-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:20

用k-近邻分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7f7021993a9f40149189be939e15c882

\

更新时间:2025-07-01 07:18

用线性-分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/5c5e31cf67c94de099b00aeab9676e48

\

更新时间:2025-07-01 07:18

cvxopt包实现马科维茨投资组合优化

旧版声明

本文为旧版实现,供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


下面代码在新版本不能直接运行,需要修改两处,一处是数据读取,一处是画图,分别参考以下两处链接。

数据读取

[https://bigquant.com/wiki/doc/

更新时间:2025-07-01 07:12

DQN个股择时策略研究

导语

本文主要分享一个基于Deep Q Network的对于个股的择时策略

算法简介

DQN与Q-Learning

本文主要使用的是Deep Q Network。DQN是强化学习的一种方法,结合了Q-learning和深度学习神经网络。

Q-learning是用一张表来记录各个状态下的各个行为的q值,它能记录的状态的个数是有限的。而在金融市场上,价格、交易量等数据都是连续的,因此可以组合成无数种状态,如果用一张表来记录,那么这张表将大到无法想象。

而DQN不用表来记录Q值,而是用一个深度学习神经网络来预测Q值,并通过不断更新神经网络从而学习到最优的行动路径。结构

更新时间:2025-07-01 07:09

基于XGBoost的价值选股策略代码

本代码完整版一共包括三部分:数据、算法、回测交易。 由于该策略与机构有一些合作,我们只放出了数据和算法。希望大家能够理解!

策略案例

https://bigquant.com/experimentshare/5a93201876eb401e998867e0b5106175

\

更新时间:2025-07-01 07:08

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2025-07-01 07:03

夏普比率公式及使用技巧(含Python代码)

夏普比率(Sharpe Ratio)是衡量投资表现的一个指标,它通过比较投资的超额回报与其承担的风险来评估投资的性价比。由诺贝尔奖获得者威廉·夏普提出,是风险调整后的回报的一种度量。

计算公式

夏普比率计算公式

其中:

更新时间:2025-07-01 06:44

Dai读取高频因子构建一个简单多因子策略

https://bigquant.com/codeshare/3b5c66d6-ed5b-46a0-8dc6-3a48cc76a482

\

更新时间:2025-04-24 03:43

A股量化择时研究报告:金融工程,战略做多不变-广发证券-20200329

/wiki/static/upload/0d/0dcd4d85-27e0-494c-85a8-911e809ac2bc.pdf

\

更新时间:2025-04-24 03:36

量化策略专题研究:行业趋势配置模型研究-中信证券-20200325

/wiki/static/upload/74/7464d5e3-c643-485a-bdef-793d0ba69cca.pdf

\

更新时间:2025-04-24 03:36

控制每日仓位的一个例子

策略案例

https://bigquant.com/experimentshare/0062e380d1b5400ca5fe4522ac948649

\

更新时间:2025-04-24 03:35

回测数据深入分析(代码)

导语:本文介绍如何对一个回测结果进行深入分析。

策略案例

我们先看一个AI策略,以下是完整的策略代码。

https://bigquant.com/experimentshare/eb2f4ca3f7c0474c95341ae1202cac0f

\

更新时间:2025-04-24 03:34

指定概念板块过滤

策略案例

https://bigquant.com/experimentshare/0f5a773d39184d73bec6520dccad7ee8

\

更新时间:2025-04-24 03:34

策略高级设置


\

更新时间:2025-04-24 03:20

双均线基金策略-股票日频

https://bigquant.com/experimentshare/5277de40609d4fffa7bbe6df2e5b1231

\

更新时间:2025-04-24 03:20

因子过滤

https://bigquant.com/experimentshare/b6bb3c84df0c4da5bb0b495bc52feb06

\

更新时间:2025-04-24 03:20

StockRanker多因子选股策略

StockRanker多因子选股策略

https://bigquant.com/experimentshare/1b8882bded4c4127a6c6edc792af662d

\

更新时间:2025-03-13 02:09

如何结合欧奈尔的RPS指标,开发AI量化策略?

若想在AIStudio3.0.0种复现这个策略, 请空降:

https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq

问题

如何结合欧奈尔的RPS指标,开发AI量化策略?

讲解


{w:100}{w:100}{w:100}{w:100}{w:100}


1988年,欧奈尔将他的投资

更新时间:2025-03-13 02:08

组合优化概述

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/57ue5zci5lyy5yyw5qac6lw-LvaK2l8nla


[https://bigquant.com/experimentshare/a65ee754dc984929afffd7614437348c](https://bigquant.com/experimentshare/a65ee754dc9

更新时间:2025-03-13 02:08

小市值策略变形记

适用于AIStudio3.0.0的版本:

https://bigquant.com/wiki/doc/%5Fnew-iH7DEZCRpf

{{membership}}

https://bigquant.com/codeshare/5a5dd498-4590-44c2-8109-ae4501f49494

\

更新时间:2025-03-13 02:08

策略研究


\

更新时间:2025-02-27 02:34

分页第1页第2页第3页第4页
{link}