《Deep Learning for Portfolio Optimization》
张子豪、斯蒂芬·佐伦、斯蒂芬·罗伯茨牛津曼数量金融研究所,牛津大学
我们采用深度学习模型直接优化投资组合夏普比率。我们提出的框架规避了预测预期的要求回报并允许我们通过更新模型直接优化投资组合权重参数。我们交易交易所交易基金,而不是选择单个资产(ETF) 的市场指数以形成投资组合。不同资产类别的指数显示强大的相关性和交易它们大大减少了可用的范围可供选择的资产。我们将我们的方法与各种算法进行比较结果表明我们的模型在测试中获得了最佳性能期间,从 2011 年到
更新时间:2022-10-09 10:31
文献来源:Jennifer Bender, Jerry Le Sun and Rick Thomas, Asset Allocation vs. Factor Allocation – Can We Build a Unified Method?[J] The Journal of Portfolio Management, 2018, 45 (2) 9-22
推荐原因:近60年间,股票和债券等资产一直是多元化投资组合的主要基石。长期以来,投资者普遍认为,对不同类别的资产进行分散投资足以为组合带来多元化投资的裨益,但近期在市场大幅下挫过程中,对不同类别资产进行分散投
更新时间:2022-10-09 10:01
中国商品期货市场近30年来取得历史性突破和跨越式发展。近年来,伴随股票市场多因子选股策略的风靡,越来越多的期货界投资人士,在尝试使用多因子框架构建商品市场的CTA策略。这类策略的核心是找到各类可以影响商品市场价格涨跌的公共因子,如资产动量、波动率、宏观基本面等,构建统一框架来评估资产价格上涨、下跌的潜力,进而构建商品市场的组合投资策略,多因子策略是近年来CTA策略的一个重要分支。本文主要尝试对多因子CTA策略构建中一些常用的因子进行测评,并试图构建一个基本的多因子CTA策略,以深入洞察该类策略的运作,供投资者参考
测试的因子包括技术面因子以及宏观基本面两类因子。技术面因子采用横
更新时间:2022-10-08 10:30
文献来源:Demiguel V, Gil-Bazo J, Nogales F J, et al. Can Machine Learning Help to Select Portfolios of Mutual Funds?[J]. Social Science Electronic Publishing, 2021.
推荐原因:众所周知,事先确定未来表现优异的共同基金是一项困难的任务。本文基于大量投资者容易获得的基金特征数据,利用机器学习方法训练提升其预测能力。研究发现,利用1980年至2018年期间美国股票型基金的数据,基于机器学习方法构建的基金组合,经风险调整
更新时间:2022-08-31 09:22
本商品策略通过机器学习可以对未来一周的走势进行预测,每周周末计算信号,周初第一天以TWAP调仓,频率低,资金容量大。
预测目标——从收益到其他
除了下期收益外,预测目标也可以是风险调整后的收益。在预测目标是风险调整后的收益下回测夏普略高,这一回测结果可以得到金融行为学的理论支持。
风险提示:标准长周期商品期货策略是基于商品历史数据的总结。由于商品期货出现较晚,市场依然处在高速变化中,模型存在较大的失效风险。
[/wiki/static/upload/1c/1cc0bc43-4bec-4616-8c13-15728fcf4e73.pdf](/w
更新时间:2022-08-31 09:09
文献来源:Ron Alquist, Andrea Frazzini, Antti Ilmanen, Lasse Heje Pedersen. Fact and Fiction about Low-Risk Investing[J]. The Journal of Portfolio Management. May 2020, 46 (6) 72-92.
推荐原因:过去10年里,包括股票和其他资产在内的低风险投资受到了广泛关注。本文指出了关于低风险投资的五个事实和五个误区。
事实是:低风险投资
更新时间:2022-08-31 08:51
更新时间:2022-08-31 08:06
\
更新时间:2022-08-31 01:47
更新时间:2022-08-29 04:43
\
更新时间:2022-08-25 02:16
\
更新时间:2022-08-25 02:16
更新时间:2022-08-17 05:22
#业内人士透露,伴随量化交易的迅猛发展,越来越多的百亿级量化私募选择降频,目前主流量化多头的年均换手率已降至30倍至50倍。降频意味着夏普比率的降低,策略的周期性特点会更加明显,管理人如何继续保持获取超额收益的竞争力?
私募排排网最新数据显示,截至目前,百亿级量化私募数量已高达34家。而在1年前,百亿级量化私募数量只有18家。也就是说,短短1年时间,头部梯队扩容了翻了一番。
另外,据某大型券商统计,截至6月底,管理规模超过200亿元的量化私募达到10家,其中管理规模超过400亿元的机构有6家。
面对“高夏普”的离去,管理人该如何保持获取超额收益的竞争力呢?在多位业内人士看来,基本面因子
更新时间:2022-08-01 05:23
涉及国内主要品种的不同的频率的回测与交易
\
更新时间:2022-07-31 01:58
本文汇集了海通量化团队在大类资产配置、指数增强、因子择时以及CTA这四方面的核心研究成果,着重展现了策略在2107年的业绩和风险收益特征。
大类资产配置策略。2017年,包含权益和债券两类资产的积极的风险均衡(ARP) 组合累计收益率为6.94%,最大回撤仅有3%,夏普比率高达1.164。
沪深300指数增强策略。2017年,沪深300增强组合累计收益为35.58%,同期沪深300指数的累计收益为21.77%,超额收益为13.81%。指数增强策略的年化跟踪误差为2.82%,信息比率为4.9。
中证500指数增强策略。2017年,中证500增强组合累计收益为12.60%,
更新时间:2022-07-30 01:06
更新时间:2022-06-15 05:58
更新时间:2022-05-22 01:17
更新时间:2022-04-29 02:25
\
更新时间:2022-04-18 02:07
更新时间:2022-04-11 11:00
更新时间:2022-03-04 06:58
更新时间:2021-12-14 13:18
更新时间:2021-12-14 13:18
导语:本文介绍如何对一个回测结果进行深入分析。
我们先看一个AI策略,以下是完整的策略代码。
https://bigquant.com/experimentshare/eb2f4ca3f7c0474c95341ae1202cac0f
\
更新时间:2021-12-14 13:11
更新时间:2021-12-14 13:08