算法交易

算法交易是金融领域的技术革新,它利用高级数学模型和复杂算法来快速、准确地分析和解读市场动态,以制定并执行交易策略。这些算法能够在毫秒级别内对市场数据做出反应,远超人脑的处理速度。算法交易为金融行业提供了一个精细控制风险的途径。包括定点交易、套利交易和趋势跟踪等多元化策略的应用,有效提高了交易的准确性和效率。其背后的智能化系统可24小时不间断地监控市场,捕捉交易机会,大大减轻了人工作业负担,同时,极大地提升了在多变金融市场中的适应能力和盈利能力。更重要的是,由于大部分决策基于预定规则和数据模型,算法交易显著降低了情绪化决策的风险。然而,也需注意到,过度依赖算法可能导致失去对市场直觉的把握,并且在极端市场情况下,算法可能失效,导致不可预见的风险。总体而言,算法交易以其快速、精准和高效的特性,逐渐成为现代金融市场的核心竞争力。

什么是量化投资?

English/繁體中文/简体中文

导语

本文从量化投资定义、量化投资特点、量化投资优势及量化投资实践流程四方面简要为大家

更新时间:2025-07-24 05:40

AI Quantitative Trading Knowledge/AI量化交易常識

AI量化交易重要常识

  1. 数据质量与完整性:高质量、准确、全面的数据是AI量化交易成功的关键。
  2. 模型过拟合:避免过度拟合历史数据,这可能导致未来性能下降。
  3. 市场效率:理解市场效率和其对交易策略性能的影响。
  4. 算法复杂性:更复杂的算法并不总是更好,简单有效往往更为重要。
  5. 风险管理:制定严格的风险管理策略以保护资本。
  6. 交易成本

更新时间:2025-07-24 05:26

一文了解算法交易策略:类型、步骤、建模思路和实施

算法交易策略简单来说就是用计算机语言(如 Python)编码的策略,用于执行交易订单。交易者将这些策略编码,以利用计算机的处理能力,以更高效的方式进行交易,几乎不需要干预。

无论你是初学者还是经验丰富的交易者,跟随这个指南踏上算法交易策略的旅程。它旨在赋予你必要的知识,帮助你在交易中取得成功。

从动量交易和套利,到做市和机器学习驱动的高频交易,我们通过实际案例和真实世界的交易算法应用进行学习。我们将探讨如何在实时市场中实施自动化交易系统,并且深入研究算法交易中的风险管理、优化技术、算法交易策略的回测以及数据获取等内容。

这个全面的指南是你值得依赖的资源,提供了专家驱动的见解,讲解简单明了

更新时间:2025-07-23 08:55

129-多空对冲的AI期货策略

策略简介

该策略为期货多空对冲策略,做多的同时也做空,赚取Alpha对冲收益,信号由算法产生。

标的

商品期货合约

信号产生

将股票市场的成熟算法StockRanker应用在期货市场,根据StockRanker算法预测未来1小时商品期货的涨跌,做多涨幅排序第1的期货品种,做空涨幅排序倒数第1的期货品种。

回测频率

1分钟K线

案例详情

输入特征模块,利用表达式构造特征,过滤条件来筛选期货。因为加工的是分钟频因子,因此读取分钟表。注意,m1和m2都是输入特征模块,都需要读取cn_future_bar1m的数据。

![](/wiki/api/at

更新时间:2025-07-01 07:55

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在量化投资中应用的具体方法解析

AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅

更新时间:2025-07-01 07:35

10大统计技术

无论你如何看待数据科学这门学科,都不能轻易忽视数据的重要性,以及我们分析、组织和理解数据的能力。Glassdoor 网站收集了大量的雇主和员工的反馈数据,发现在美国“25个最好的工作职位清单”中排名第一的是数据科学家。尽管排名摆在那里,但毫无疑问,数据科学家们研究的具体工作内容仍会不断增加。随着机器学习等技术变得越来越普遍,像深度学习这样的新兴领域获得了来自研究人员、工程师以及各大公司更多的关注,数据科学家会继续站在创新浪潮之巅并且推动技术的不断发展。

尽管拥有强大的编码能力非常重要,但数据科学也并非全部都是关于软件工程的(事实上,能够熟练掌握python已经足够很好的开展工作了)。数据科学

更新时间:2025-07-01 07:35

Python基础入门


\

更新时间:2025-07-01 07:35

算法交易的主要类型与策略分析

前言

算法交易起源于上世纪中叶的配对交易

历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动方向。

配对交易逐渐成熟,发展成后来的算法交易。随后算法交易策略慢慢在华尔街流传开来并被广泛使用,同时也带来了非常可观的盈利。原来在摩根士丹利从事配对交易的研究员,后来逐渐成为如大卫·肖、詹姆斯·西蒙斯这类明星基金经理手下的精英,算法交易的“黑盒子”便由此诞生。

随着计算机的广泛普及,华尔街各大

更新时间:2025-07-01 07:35

BigQuant使用指南

{{use_style}}

一.导语

欢迎您来到BigQuant!

BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。

二.开发者

如果您是一位充满好奇心的学习者,在BigQuant您可以前往:

1.培训报名

与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。

![{w:100}{w:100}{w:100}{w:100}{w:10

更新时间:2025-07-01 07:33

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:20

用k-近邻回归算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/a4487be0f1a9468faadee1be471b7d26

\

更新时间:2025-07-01 07:19

使用bigexpr表达式引擎开发AI策略

策略案例

https://bigquant.com/experimentshare/05251c753111424eaff32648838ac24f

\

更新时间:2025-07-01 07:17

利用深度学习技术预测股票价格

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:10

lightGBM_AI选股

https://bigquant.com/experimentshare/2fbb2629dcb0450bbf72e224835b4957

\

更新时间:2025-07-01 07:10

LSTM Networks应用于股票市场之Sequential Model

策略案例


https://bigquant.com/experimentshare/8594992a1d9345d98cbe949eb6297067

\

更新时间:2025-07-01 07:09

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2025-07-01 07:03

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:00

散户如何做量化交易

量化交易是利用数学模型和算法交易的方法,依赖于精确的数学模型和计算机算法来分析市场数据,并在合适的时机进行买卖。

对于散户来说可以通过自动化量化分析及交易减少人为情绪对交易决策的影响。


散户在选择量化交易平台时,需要考虑选择知名度高、安全性好的平台,以确保平台的声誉和可靠性。

同时,平台应提供丰富的交易工具和市场数据,以便散户能够进行有效的交易。

此外,明确其他相关费用也是一个重要的考虑因素。良好的客户服

更新时间:2025-07-01 06:52

量化交易模型及策略2023版

量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。

量化交易模型的一般由以下几个部分组成:

1 数据处理模型: 量化交易的基石是数据。这包括了从历史价格、成交量到公司财报、宏观经济指标等各类数据。对这些数据的收集、清洗和处理是构建有效模型的首要步骤。**[BigQuant策略编写平台](ht

更新时间:2025-07-01 06:51

算法交易指南

谁可以读?

本书是为了任何想要了解算法交易领域的人而写的。根据我们的经验,我们想象中的读者将是:

● 大学生

● 科技专业人士

● 不同类型的业余交易者(例如,专业交易者,或者喜欢积极管理个人投资组合的业余爱好者)

● 任何渴望了解更多关于应用量化金融的人

有什么先决条件吗?

我们假设读者没有编程背景。虽然不必要对金融、数学或计算机科学有了解,但如果对这些领域有任何/一些/全部有适度的掌握,将会更容易阅读这本书。

内容大纲

  1. 金融交易简史:介绍了金融交易的历史,从1602年荷兰东印度公司的股票交易开始,到现代金融市场的发展。
  2. **

更新时间:2025-04-24 04:14

聚宽投资 王恒鹏:《量化团队内部协作的实践探索》文字实录

图片4月29日,由华泰证券、宽邦科技、亚马逊云科技、朝阳永续、金融阶等多家市场权威机构联合组织撰写的《2021年中国量化投资白皮书》正式发布,并在深圳举办发布会。聚宽投资合伙人王恒鹏出席会议并作题为《量化团队内部协作的实践探索》的演讲,我们对文字进行实录,以飨读者。 图片

《2021中国量化投资白皮书》(以下简称《白皮书》)谈到:中国量化相比美国差了35年的时间。但实际上过往这四五年,中国量化规模已经发展了10多倍,量化内卷已经形成了很大程度的行业共识,而行业越内卷,机构对人才的重视程度则越高。因此今天我站在团队管理、公司文化和个人职业发展角度,给大家分享一下聚宽这几年的探索和心得。 ![

更新时间:2025-04-24 03:43

A股量化择时研究报告:金融工程,战略做多不变-广发证券-20200329

/wiki/static/upload/0d/0dcd4d85-27e0-494c-85a8-911e809ac2bc.pdf

\

更新时间:2025-04-24 03:36

华泰金工量化择时系列:牛熊指标在择时轮动中的应用探讨-华泰证券-20200407

/wiki/static/upload/73/7387f8bc-3d1b-4b37-ad6d-7e0d5ddcf4b2.pdf

\

更新时间:2025-04-24 03:36

量化策略专题研究:行业趋势配置模型研究-中信证券-20200325

/wiki/static/upload/74/7464d5e3-c643-485a-bdef-793d0ba69cca.pdf

\

更新时间:2025-04-24 03:36

控制每日仓位的一个例子

策略案例

https://bigquant.com/experimentshare/0062e380d1b5400ca5fe4522ac948649

\

更新时间:2025-04-24 03:35

分页第1页第2页第3页第4页第5页第6页第7页
{link}