作者:Mybridge
翻译:BigQuant
我们比较了2017年全年近2万篇关于机器学习应用的文章,并且从中挑选出50篇最有价值的文章分享给大家。
“在硅谷,招聘一名机器学习工程师或数据科学家正在变得像招聘一名职业运动员一样。 这就是对他的要求”——[纽约时报](https://www.nytimes.com/2017/10/22/technology/artificial-in
更新时间:2021-08-24 05:46
作者:James Le 编译:caoxiyang
在机器学习中,有一个叫做“世上没有免费午餐”的定理(NFL)。简而言之,我们无法找到一个放之四海而皆准的最优方案,这一点对于监督学习(即预测建模)尤为重要。例如,你不能说神经网络总是比决策树好,反之亦然。因为其中有很多因素在起作用,比如数据集的大小和结构。
因此,您应该针对您的问题尝试多种不同的算法,同时,保留一组数据,即“测试集”来评估性能并选
更新时间:2021-08-24 05:46
作为平台的铁杆用户,本文主要分享下使用StockRanker模型来实盘交易的一些经验。
在机器学习领域,预测的结果依赖于:数据、算法和特征,因此真正好的策略一定是特征选择和特征构建非常好。
平台的StockRanker模型策略生成器只是搭建了一个策略框架,输入不同的特征就可以看到不同的策略效果。去年的时候,我构造出了大约10个特征进行回测,从12年到16年底,平均年化收益达到了76%,因此就打算先用一部分小资金实盘,进一步验证特征的有效性。
因为政策原因,目前国内股票实盘交易接口并没有开放,因此量化平台都不会说自己平台上可以实盘交易,免得监管部门叫去喝茶。于是只有手动下单,好在股票持仓时
更新时间:2021-08-24 05:46
机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归 和 逻辑回归 。
线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是
更新时间:2021-08-18 06:37
这是关于股票主动投资组合管理的第一篇教程。在开始介绍正式内容之前,我先简要简要说一下《Alpha系列》的初衷。
近年来,随着国内大数据和人工智能的迅速崛起,量化交易领域也有了长足的发展。 从原来的指标驱动型程序化交易,演化到现在的以机器学习、人工智能为代表的新型量化交易。同时,量化交易的门槛与过去相比下降了许多。 不仅是因为这些年数据科学的发展带动了python及其生态的成熟和推广,更由于类似tushare、vnpy、zipline等开源项目以及像quantopian、bigquant等量化平台的出现, 使得以前做量化先造轮子到现在量化从业者可以专注于策略的研发,使得更多的人能够进入到这个领
更新时间:2021-07-30 09:36
更新时间:2021-07-30 09:11
更新时间:2021-07-30 08:12
更新时间:2021-07-30 07:26
更新时间:2021-07-30 07:26
特征选择是除数据之外最关键的步骤。尽管这一步非常必要,但很多指导文章中却完全忽略这一过程。
本文将展示一些很棒的特征选择方法,帮助读者在机器学习中更加如鱼得水。
特征选择是什么?实际问题中,需要什么样的特征来帮助解决建模并不总是很清晰。在这个问题上,数据总是存在各种问题,比如数据过多,不相关等。特征选择主要研究如何使用算法选择出重要特征。
那为什么不将所有的特征都扔进机器学习模型,然后收工回家呢?
在实际问题中可能没有开源数据集,或者这些数据不总是含有解决问题的相关信息。在这些现实问题面前,特征选择能够最大化数据相关性,降低数据冗余度。这有助于建立好的模型,减小模型大小。
更新时间:2021-07-30 07:26
会议:开源证券资本市场峰会,量化分论坛
日期:2020年12月8日 \n 地点:上海浦东丽思卡尔顿酒店 \n 主办:开源证券金融工程团队 \n
主题演讲:机器学习在高频交易的应用 \n
特邀嘉宾:张红庆
深圳市丽海弘金科技有限公司副总经理,高中全国奥数一等奖,华中科技大学电信系,15年移动通信行业从业经验,5年量化金融科技从业经验。
发言纪要:
大家好!感谢__开源证券金融工程团队__的
更新时间:2021-02-25 11:30