策略模版/Demos

BigQuant策略模板库旨在帮助用户快速开始并优化他们的量化投资策略。无论您是初学者还是经验丰富的投资者,我们的策略模板都能提供从简单到复杂的多种投资策略选择。这些模板涵盖了基础策略、中级策略和高级策略。

  • 基础策略模板:适用于刚开始接触量化投资的用户,例如简单的移动平均线交易策略。

由Unknown创建,最终由bqadm更新于

202-本地文件上传

介绍

  • 本地上传csv文件并读取
  • 和其他数据联合使用

实现

dai处理文件

  • 生成一个csv文件作为测试,包括日期、股票代码、当日涨跌幅。
  • 使用dai直接操作csv,如果是本地csv文件则直接拖拽至资源管理器。

![](/wiki/api/attachme

由Unknown创建,最终由Unknown更新于

117-TALIB指标策略

简介

本系列文章为大家介绍了技术分析指标,并且介绍了一些常见的使用技术指标构建的策略

量化投资中的技术分析

量化投资是通过数学模型和算法对市场数据进行分析和交易决策的投资方法。技术分析(Technical Analysis)是量化投资中的一个重要分支,旨在通过分析历史价格和

由small_q创建,最终由small_q更新于

117a-TALIB指标选股策略

策略介绍

该策略是一个TALIB指标选股策略

买入条件是(1)今日开盘价大于昨日收盘价;(2)5日收盘价均线大于10日收盘价均线的股票

买入后,如果5日收盘价均线小于10日收盘价均线,则次日卖出。

策略流程

  1. 股票过滤:剔除ST、停牌股、北交所
  2. 筛选条件:上市天数大

由bqbcl5zr创建,最终由Unknown更新于

117b-基于MACD指标的事件策略

策略介绍

该策略是一个典型的事件策略,事件策略和选股策略是有本质上的区别的,事件策略的基本思想是,对于特定的股票,什么时候该买,什么时候该卖,本文介绍了一种基于MACD指标的事件策略

具体来说,MACD包括三个指标:

  • MACD(平滑异同移动平均线):MACD线是短期指数移动平均线(通

由small_q创建,最终由Unknown更新于

303-如何固化XGBoost模型并调用|模型固化

简介

由于深度学习中牵扯到Dropout和随机种子等多处随机项,因此如果无法固化模型,当缓存丢失后会模拟交易/回测会触发重新训练,导致模型变化,本文主要讲究如何使用XGBoost模型开发AI策略的过程中的相关技术。

保存模型的好处:

  1. 模型固化,每次模型的预测结果一

由Unknown创建,最终由bqadm更新于

114-交易引擎中设置止盈止损与大盘风控逻辑

策略介绍

本策略主要讲解如何在策略中加入止盈止损与大盘风控逻辑

本策略就是在平台的默认可视化线性模板策略的基础上进行修改的,就是一个简单的小市值策略

  • 剔除上市小于1年的新股、剔除ST股票、按照市值排序
  • 等权持股30只、持仓5个交易日

策略实现

1. 止盈止损

由small_q创建,最终由Unknown更新于

127-期货布林带通道突破策略-日频

策略简介

布林带期货交易策略是一种基于技术分析的交易策略,它利用布林带(Bollinger Bands)指标来确定市场的波动性和潜在的交易机会。布林带由三条线组成:中轨线、上轨线和下轨线。具体来说:

  1. 中轨线(Moving Average):通常为一段时间的简单移动平均线(

由Unknown创建,最终由Unknown更新于

缺失值处理

在使用“输入特征(DAI SQL)”提取数据的时候,可能会遇到缺失值的问题,缺失值的出现可能是因为原始数据表中有缺失值,也有可能是表达式计算的过程中产生了缺失值

对于缺失值,我们主要有两种处理方式,缺失值删除,或者缺失值填充

1. 缺失值删除

要想将缺失值剔除,只需要在“

由small_q创建,最终由small_q更新于

🌟201-数据与策略分享

介绍

  • 构建和管理自己的数据与因子
  • 分享到策略社区并保护核心逻辑
  • 支持数据付费订阅
  • 支持他人克隆策略,每日获取信号

技术方案

![](/wiki/api/attachments.redirect?id=be72745b-dff3-4d11-918a-0dec5f5

由Unknown创建,最终由Unknown更新于

116-质量投资策略

策略介绍

该策略是一个质量投资策略,即基于公司质量指标选择股票

在这里,我们将质量因子(score)定义为盈利能力(Profitability) + 成长性(Growth) + 安全性(Safety)

  • 盈利能力指标由资产毛利率GPOA,ROE,ROA,资产流动资金比CFOA,毛利率G

由bqbcl5zr创建,最终由Unknown更新于

121-指数择时策略

策略介绍

本策略是一个指数择时策略,基本逻辑是根据市场走势选择是否交易,并调整投资组合,即利用指数特征来进行风控。

策略流程

本策略是指数择时策略的具体实现,该模型的思想如下:

  1. 股票池过滤:剔除ST、退市、停牌股、北交所
  2. 筛选条件:上市天数大于270天,收盘价小于3

由bqbcl5zr创建,最终由Unknown更新于

使用M.tune写一个AI量化策略滚动训练

本文档介绍在150-AI选股策略新的策略模版下如何进行滚动训练。

\

使用方法

创建调优对象

  • 新建一个可视化的机器学习策略,将可视化画布转化为代码形式:

![](/wiki/api/attachments.redirect?id=c5b

由Unknown创建,最终由Unknown更新于

107-股息率策略

策略介绍

本策略是104选股策略(🌟104-选股策略)模板的具体应用。基本逻辑是股息率较高的公司能够持续支付较高的现金股息,这通常意味着这些公司拥有较为稳定和可预测的现金流。投资者通过持

由small_q创建,最终由Unknown更新于

AI StockRanker耍单票策略

导语

在之前的版本里,很多用户喜欢开发每日换仓、仓位集中度高的AI StockRanker策略,无需编写sql代码,因此本教程给出这样的一个策略实现,方便用户在此基础上根据自己需求调整策略。

本策略绩效

本策略年化收益74%,夏普比率2.5,最大回撤不到-8.5%,整体绩效不错

由Unknown创建,最终由Unknown更新于

数据读取

在AIStudio中编写的策略,不论是可视化版本还是代码版本,使用的数据来源都是BigQuant的DAI数据平台

DAI数据平台由两个部分组成:

  • DAI数据平台的框架是BigQuant自研的分布式高性能数据库,了解数据平台怎么用,可以查看这个链接:[数据平台/DAI](https:/

由small_q创建,最终由small_q更新于

000-预备知识

介绍

BigQuant是专业但易用的AI量化投资平台。如下知识可以帮助我们更好的开始策略开发。

如果没有特别说明,请在 AIStuido 3.0使用。

编程

BigQuant平台同时支持可视化编程开发和代码编程开发,并且两种模式可以无缝切换和融合

  • 可视化:无需学习复杂的编程

由Unknown创建,最终由Unknown更新于

表达式函数

BigQuant的DAI数据平台提供了许多字段运算的表达式函数,完整的函数在这个文档(DAI SQL 函数列表),我们这篇文档总结了一些常见的表达式

1. DAI数据平台表达式函数

由small_q创建,最终由small_q更新于

203-常见的数据处理方式

本系列文章列举了AIStudio3.0环境中可视化模式下的常用数据处理方式

小伙伴们可以在评论区发你们想了解的其他数据处理方式,我们会在本文持续更新

由bq2qbou2创建,最终由small_q更新于

131-小市值稳定增长策略

策略介绍

小市值稳健增长策略是一种专注于挖掘市值较小但具有稳健增长潜力的股票的投资策略。该策略通过深入分析这些公司的基本面、财务状况、行业前景以及市场情绪,筛选出具备长期成长潜力的优质小市值公司,以期在未来获得超额回报。通过该策略选择的股票的优势包括有

  • 高增长潜力:小市值公司通

由bqrch0cl创建,最终由Unknown更新于

125-多头排列回踩买入策略

什么是均线?

金融市场上每个人都有一套自己的分析方法,无论你是一个技术派、基本面派、消息派还是量化投资派,对于“均线”这个名词一定不会陌生。虽说这个概念诞生于市场技术分析领域,但由于它的通俗易用,均线一直受到投资者和市场分析人士的青睐。

均线的全称是移动平均线(MA)。移动平均线是个什么

由Unknown创建,最终由Unknown更新于

101-简单动量策略

策略介绍

动量策略是一种利用历史价格趋势来预测未来价格行为的量化交易策略。这种策略基于一个假设:股票或其他资产的未来价格趋势可能会延续其近期的表现。在实际应用中,动量策略通常会购买表现好的资产并卖出表现差的资产。

策略思想

动量策略的核心是“追涨避跌”。具体来说,这种策略会:

由Unknown创建,最终由Unknown更新于

102a-AI策略-代码交易

策略介绍

  • 102 中我们使用了 [仓位分配](https://bigquant.com/wiki/doc/aistudio-HVwrgP4J1A#h-%E4%BB%93%E4%BD%

由Unknown创建,最终由Unknown更新于

112-Fama-French三因子模型策略

策略介绍

上世纪90年代,经济学家Eugene Fama和Kenneth French提出了著名的Fama-French三因子模型,在经典的CAPM模型上进行了拓展。

Fama-French三因子模型使用三个因素来解释股票收益

  • 市场因子(MKT):体现为整个市场的收益
  • 规模因子(

由bq2qbou2创建,最终由bqadm更新于

分页:第1页第2页第3页第4页第5页第6页第7页第8页第9页第23页
{link}