金融市场

金融市场是全球经济活动的核心,它是一个复杂的系统,通过无数种交易和活动,将全球的投资者、企业、政府和其他实体紧密地联系在一起。金融市场主要的功能是促进资金的有效流动和使用,提供了资金需求和供应之间的桥梁。它允许投资者通过股票、债券、期货、期权和其他金融工具进行投资,从而为企业和政府提供必要的资金。 金融市场具有高度的流动性和透明度,使得参与者能够迅速、准确地了解市场情况和资产价格的变化。它的效率和健全性直接影响着整个经济系统的稳定和增长。此外,金融市场也是评估经济风险和决定资本成本的关键场所。 然而,金融市场也充满了风险和挑战。市场波动、信息不对称、信用风险等问题都可能对投资者和市场整体造成损失。因此,有效的监管和风险管理对于维护金融市场的健康和稳定至关重要。 总的来说,金融市场是现代经济的心脏,它通过促进资本的流动和分配,推动着全球的经济增长和发展。

机器学习在量化投资中的趋势和应用

来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien

机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,人们对其在金融领域的应用也越来越感兴趣。在投资管理中,已被应用于新闻的情绪分析、趋势分析、投资组合优化、风险建模等。那么,机器学习在量化投资中有哪些潜在应用呢?

1.常见的机器学习算法

机器学习算法主要有三种:监督学习、无监督学习和强化学习。监督学习是在已知输入和输出的情况下训练出一个模型,将

更新时间:2024-12-11 08:16

高频交易:为了0.07毫秒的比拼,竟然花费了1400万美金

摘要

2/3光速对你我来说可能只是一瞬,但对于高频交易公司来说,可能就是事业的全部。在瞬息万变的市场上,棋先一招常常就在微秒之间。

眨眼 0.4 秒,常被形容快,但有家公司花了 1400 万美元,就为了让自己再快 0.07 毫秒( 0.00007 秒),5700 分之一眨眼的时间。

Jump Trading 公司在全球最大期货交易所芝加哥商品交易所数据中心对面,买了一块 12 万平方米的空地。

买了之后,他们没盖楼炒房,也不是为了风水,就是架微波通信基站,用于第一时间把交易请求传到芝加哥商品交易所。

![{w:100}{w:100}](https://n.sinaimg.cn

更新时间:2024-12-05 06:09

求助请教,如何实现日线当日卖出后,资金直接用于买入?

# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
    #...
    # 2. 生成卖出订单
    print(f'{today} before cash:{context.portfolio.cash}')
    if cash_for_sell > 0:
        for instrument in sell_instruments:
            res = context.order_target(context.symbol

更新时间:2024-09-19 06:51

Word2Vec系列



\

更新时间:2024-06-12 06:06

监督式机器学习算法的应用:择时

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


\

导语

《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在

更新时间:2024-06-12 05:57

AI Alphas(A股版)

本篇报告详尽地介绍了基于人工智能的阿尔法策略框架,包括基于AI技术在策略研究上的阶段性的工作和成果,并提供完整代码,读者可克隆策略,复现效果和继续改进。 希望本文能帮助读者拓展研究思路,应用AI来做更好的量化策略研发,把人工智能的能力赋予更多的投资者 (Democratize AI to empower investors)。

\

摘要

本篇报告构建了一个完整的可复用的 人工智能阿尔法策略框架

本篇报告用AI对基本面、财务、交易型等 282个因子 做了单因子策略研究和多个维度上的绩效分析,并 **发掘了在短、中、长周期上多个夏普比率超过1.5 、年化收益超过 30

更新时间:2024-06-12 05:53

如何获取指数代码和分钟行情数据,以中证1000和500为例

在2022年7月22日上市交易的中证1000股指期货是2022年的金融市场一件大事,公募私募基金又多了一份对冲工具,指数增强和alpha策略更能施展拳脚。本文介绍如何获取中证1000的代码和行情数据。

https://bigquant.com/experimentshare/c77ca255831943a68ad9baa34f0248a2

如果想获取中证500的代码和行情,只需改下名称就行:

![{w:100}](/wiki/api/atta

更新时间:2024-06-11 03:30

如何将60分钟K线合成120分钟K线

问题

如何利用60分钟K线来合成120分钟K线呢?

视频

https://www.bilibili.com/video/BV1d54y1d7tv/

策略源码

https://bigquant.com/experimentshare/4e081ef44d3246f48551c6eee74f629d

\

更新时间:2024-06-07 10:55

强有效因子下的线性模型选股策略

备注:本策略含有未开放的数据,故克隆之后无法运行。

{{membership}}

https://bigquant.com/codeshare/b6e80d6b-f5e0-4778-97cf-77fcadb7b488

\

更新时间:2024-06-07 10:55

三因子线性模型(包含滚动训练)

{{membership}}

https://bigquant.com/codeshare/37d36e41-2184-4342-b581-9561f199eeec

\

更新时间:2024-06-07 10:55

LSTM+CNN深度学习预测股价

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/c13d6baefe5d4c75bb87eea9364b0f75

\

更新时间:2024-06-07 10:55

筹码理论的探索-筹码分布计算的实现

问题

有筹码分布指标吗

视频

https://www.bilibili.com/video/BV1Yu411X7C2/

策略源码

筹码理论的探索-筹码分布计算的实现

更新时间:2024-06-07 10:55

高频回测算子使用(HFTrade)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

一阳穿多线策略的因子描述-滚动训练

【此文档为旧版】 相关新版文档参考:

https://bigquant.com/wiki/doc/ai-rq8QOC2fDb

策略案例

https://bigquant.com/experimentshare/16571b942a8a4a92a4914c15f65d0883

\

更新时间:2024-06-07 10:55

参数寻优获得/夏普信息比/最大回撤/胜率-2

8月19日Meetup模板:第二种方式

https://bigquant.com/experimentshare/5e82e63fe5154eb58b69ffa37998d588

\

更新时间:2024-06-07 10:55

高频动量策略与主观超短交易

分享主题

高频动量策略与主观超短交易

\

视频回放

https://www.bilibili.com/video/BV1eG4y147Ki/

\

直播资料

/wiki/static/upload/70/70110d2a-6075-45b4-ad3c-618340dc720f.pdf

\

更新时间:2024-06-07 10:55

大盘收益率相对于个股的收益率的3天内相关系数因子demo

2021年3月25日Meetup策略:

策略案例


https://bigquant.com/experimentshare/563c042349504bbbb359118345b65480

\

更新时间:2024-06-07 10:55

AI量化大赛获奖策略分享《龙头战法实盘-中证150增强》

视频

https://www.bilibili.com/video/BV11S4y197md?share_source=copy_web

策略源码

龙头战法实盘+AI-量化大赛NO.3-中证150增强[策略分享]

更新时间:2024-06-07 10:55

storanker模型同时买入因子最大和最小

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

如何将回测设置为T+2开盘买入,T+3尾盘卖出?

问题

如何将回测模块设置成T+2开盘买入,T+3尾盘卖出(目前我们支持的是T+1买入)

视频

https://www.bilibili.com/video/BV1bT411u71x?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/157e67091c1b4534b7ea1f0a4255a38b](https://bigquant.com/experi

更新时间:2024-06-07 10:55

获利盘函数、筹码理论中,是否可以取到 股指IF、IC、IH的值?

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[http

更新时间:2024-06-07 10:55

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2024-06-07 10:55

另类标签(calmar)选股模型

https://bigquant.com/experimentshare/887354a18288489e9bb5d65923da8e9b

\

更新时间:2024-06-07 10:55

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2024-06-07 10:55

基于遗传算法挖掘股票因子

{{membership}}

https://bigquant.com/codeshare/9aa6342b-2c67-4417-afea-0d5874e5d340

\

更新时间:2024-06-07 10:55

分页第1页第2页第3页第4页第5页第6页第7页第8页
{link}