投资策略

投资策略是投资者为实现其投资目标而采取的一系列决策和行动。从金融角度看,有效的投资策略不仅能降低风险,还能最大化回报。它涉及到资产配置,即如何在不同的投资工具(如股票、债券、商品、现金等)之间分配资金;时机选择,即决定何时进入或退出市场;以及证券选择,即挑选具有增长潜力的具体投资标的。成功的投资策略需要综合考虑市场环境、投资者风险承受能力和投资期限等因素,并根据这些因素进行动态调整。通过多元化投资、风险管理以及持续的市场研究和分析,投资者可以制定并执行适合自己的投资策略,从而在复杂多变的金融市场中实现理财目标。

Quantitative Investment Overview

\

更新时间:2025-07-24 05:49

什么是量化投资?

English/繁體中文/简体中文

导语

本文从量化投资定义、量化投资特点、量化投资优势及量化投资实践流程四方面简要为大家

更新时间:2025-07-24 05:40

常见量化投资策略

简单来讲,量化投资就是利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程。

量化交易 是指借助现代统计学和数学的方法,利用[计算机技术来进行交易的证券投资方式。量化交易从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可以持续的、稳定且高于平均收益的超额回报。

量化投资模型只是一种工具、一种方法、一种手段,能实现成熟而有效的投资理念,需要不断根据投资理念的变化、市场状况的变化而进行修正、改善和优化,换而言之,有效的模型建立在适应市场环境的有效

更新时间:2025-07-23 08:44

116-质量投资策略

策略介绍

该策略是一个质量投资策略,即基于公司质量指标选择股票

在这里,我们将质量因子(score)定义为盈利能力(Profitability) + 成长性(Growth) + 安全性(Safety)

  • 盈利能力指标由资产毛利率GPOA,ROE,ROA,资产流动资金比CFOA,毛利率GMAR,应计项目情况ACC组成
  • 成长性指标包含ROE同比增长、每股收益同比增长、毛利润同比增长、经营活动产生的现金流同比增长
  • 安全性由中证1000指数的22日BETA系数、杠杆组成

策略流程

1.股票池过滤:剔除ST、退市、停牌股、北交所股票

2.筛选条件:上市天数大于270

更新时间:2025-07-01 07:55

131-小市值稳定增长策略

策略介绍

小市值稳健增长策略是一种专注于挖掘市值较小但具有稳健增长潜力的股票的投资策略。该策略通过深入分析这些公司的基本面、财务状况、行业前景以及市场情绪,筛选出具备长期成长潜力的优质小市值公司,以期在未来获得超额回报。通过该策略选择的股票的优势包括有

  • 高增长潜力:小市值公司通常处于成长期,具备高增长的潜力;
  • 估值优势:相较于大市值公司,小市值公司可能存在估值低估的机会;
  • 风险分散:通过分散投资于多个小市值股票,降低了单一公司业绩波动对整体组合的影响。

同时使用该策略也会承受一定的风险

  • 流动性风险:小市值股票流动性较差,可能导致买卖

更新时间:2025-07-01 07:55

133-可转债双低策略

回测绩效

\

定义

可转债全称为可转换债券,指债券持有人可按照发行时约定的价格将债券转换成公司的普通股票的债券,如果债券持有人不想转换,则可以继续持有债券,直到偿还期满时收取本金和利息,或则在流通市场出售变现。

如果持有人看好发债公司股票增值潜力,则可以行使转换权,按照预定转换价格将债券转换为股票。

关键指标

  • 转换比例(conversion ratio):一债券可转换为普通股的数量。
  • 转换价格(convers

更新时间:2025-07-01 07:55

149-破净股策略

策略概述

本策略基于破净股的投资思想,主要通过筛选股价低于公司每股净资产的股票,来寻找市场中被低估的投资机会。破净股通常由于市场情绪、短期波动等因素被低估,但从长期来看,这类股票的内在价值往往会被市场重新认识并反映在价格上。策略通过剔除高风险和财务不稳定的股票,专注于那些具备稳健基本面且有较大反弹潜力的公司,旨在构建一个具备长期价值回归潜力的股票组合,符合稳健的价值投资理念。

因子介绍:

  • 总市值(total_market_cap): 该因子用于衡量公司的整体规模,是衡量公司在资本市场上影响力的重要指标之一。通常市值较大的公司具有较强的市场稳定性和抗风险能力,因此

更新时间:2025-07-01 07:55

量化投资策略有哪些类型特点及适用人群场景

量化投资策略是利用数学模型和算法来分析市场并做出投资决策的方法。这些策略可以大致分为几个类型,每种类型都有其特点、适用人群和适用场景。以下是一些主要的量化投资策略类型:

  1. 趋势跟踪策略
    • 特点:识别并跟随市场趋势,比如股票或商品的价格走势。
    • 适用人群:适合那些相信市场趋势会持续一段时间的投资者。
    • 适用场景:在市场趋势明显且稳定的情况下效果最佳,如牛市或熊市。
  2. AI量化机器学习策略
    • 特点:利用机器学习算法来分析大量数据并预测市场走势。
    • 适用人群:对人工智能和机器学习

更新时间:2025-07-01 07:48

算法交易的主要类型与策略分析

前言

算法交易起源于上世纪中叶的配对交易

历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动方向。

配对交易逐渐成熟,发展成后来的算法交易。随后算法交易策略慢慢在华尔街流传开来并被广泛使用,同时也带来了非常可观的盈利。原来在摩根士丹利从事配对交易的研究员,后来逐渐成为如大卫·肖、詹姆斯·西蒙斯这类明星基金经理手下的精英,算法交易的“黑盒子”便由此诞生。

随着计算机的广泛普及,华尔街各大

更新时间:2025-07-01 07:35

什么是无监督学习(机器学习)

什么是无监督学习?

顾名思义,“无监督”学习发生在没有监督者或老师并且学习者自己学习的情况下。

例如,考虑一个第一次看到并品尝到苹果的孩子。她记录了水果的颜色、质地、味道和气味。下次她看到一个苹果时,她就知道这个苹果和之前的苹果是相似的物体,因为它们具有非常相似的特征。她知道这和橙子很不一样。但是,她仍然不知道它在人类语言中的名称是什么,即“苹果”,因为不知道这个标签。

这种不存在标签(在没有老师的情况下)但学习者仍然可以自己学习模式的学习称为无监督学习。

![img{w:100}](https://d1rwhvwstyk9gu.cloudfront.net/2021/

更新时间:2025-07-01 07:35

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在量化投资中应用的具体方法解析

AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅

更新时间:2025-07-01 07:35

从均值方差到有效前沿(代码)

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/68b5d7cfac264dbda781c1fbcc6a4880

\

更新时间:2025-07-01 07:35

Pandas基础操作技能get! 强烈推荐!

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


下列代码在读取数据时,使用最新dai.query接口即可。

数据读取

\

策略案例

[https://bigquant.com/codesharev2/5509a634-c207-4eaf-a6f2-a73d15fada39](https://bigqua

更新时间:2025-07-01 07:35

机器学习在量化投资中的趋势和应用

来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien

机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,人们对其在金融领域的应用也越来越感兴趣。在投资管理中,已被应用于新闻的情绪分析、趋势分析、投资组合优化、风险建模等。那么,机器学习在量化投资中有哪些潜在应用呢?

1.常见的机器学习算法

机器学习算法主要有三种:监督学习、无监督学习和强化学习。监督学习是在已知输入和输出的情况下训练出一个模型,将

更新时间:2025-07-01 07:35

BigQuant使用指南

{{use_style}}

一.导语

欢迎您来到BigQuant!

BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。

二.开发者

如果您是一位充满好奇心的学习者,在BigQuant您可以前往:

1.培训报名

与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。

![{w:100}{w:100}{w:100}{w:100}{w:10

更新时间:2025-07-01 07:33

用线性-分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/5c5e31cf67c94de099b00aeab9676e48

\

更新时间:2025-07-01 07:18

国信投资时钟策略研究(一)代码

导语

美林投资时钟其主要原理是根据经济增长和通货膨胀趋势,将经济周期划分为4 个阶段:复苏、过热、滞涨、衰退。复苏周期配置股票,过热周期配置大宗商品,滞涨周期持有现金,衰退周期配置债券。 国信金工在《海外量化技术本土化系列报告之十一:美林投资时钟A 股市场探讨》中分析了美林投资时钟直接用于A股市场的效果较差,进而做了进一步详尽的研究: 行业增长稳定性分析方面:考察指标1)主营收入增长稳定性;2)主营成本增长稳定性;3)毛利增长稳定性,实证结果显示:医药生物、食品饮料、零售、农林牧渔的稳定性较好,而建筑建材、煤炭、有色、电力、汽车、钢铁的稳定性较差。 通胀传导能力分析:通过分析主营业务收

更新时间:2025-07-01 07:16

ROE策略

策略介绍

本文将介绍经典的ROE策略,并通过编写简单的策略示例进行回测。

盈利逻辑

  • 高ROE公司通常具有较强的盈利能力

    高ROE表明公司能以较少的股东权益产生更多的利润,意味着公司经营效率高,盈利能力强。

  • 高ROE公司通常具有良好的管理和业务模式

    高ROE通常反映了公司管理层的优良管理能力和成功的业务模式,使得公司在竞争中具备优势。

  • 高ROE公司通常具有较高的股东回报

    因为高ROE代表公司可以用股东的投入资金获得更高的收益,这通常会体现在较高的股息支付或资本增值上。

策略流程

  1. 过滤ST、停牌

更新时间:2025-07-01 07:13

行业轮动量化策略【源码】

本文是行业轮动策略的源码。

策略案例


https://bigquant.com/experimentshare/73f9656a0f5645c8909423df662357ff

\

更新时间:2025-07-01 07:12

获取连续下跌股票策略

策略案例

https://bigquant.com/experimentshare/06c5d16cb44b46e7a8ffe45ad9a69a95

\

更新时间:2025-07-01 07:12

利用深度学习技术预测股票价格

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:10

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-07-01 07:00

量化选股是什么意思及方法步骤

量化选股是一种基于数学和统计方法的股票投资策略,它使用复杂的数学模型和算法来分析和选择股票。这种方法强调数据驱动和系统化的决策过程,与传统基于主观判断和基本面分析的选股方法相对。

概念

量化选股的核心是利用历史数据和统计分析来预测股票未来的表现。这通常包括对大量历史数据的分析,如股票价格、交易量、公司财务指标、宏观经济数据等。量化投资者会开发算法模型,以识别股票表现的潜在驱动因素和预测市场趋势。

更新时间:2025-07-01 06:50

国内AI量化投资平台有哪些

BigQuant是国内拥有AI人工智能机器学习排序,同时囊括众多优质高级量化投资因子的AI量化投资平台;

AI量化投资平台一般都结合了人工智能(AI)技术和量化投资策略,旨在通过数据分析和机器学习算法提高投资决策的质量和效率。

概念

AI量化投资平台使用人工智能技术,如机器学习、深度学习、自然语言处理等,来分析大量的市场数据和财务信息。平台能够从这些数据中学习模式,做出预测,并据此自动化

更新时间:2025-07-01 06:50

回测结果是什么意思及怎么解读

回测结果是基于历史数据对某一投资策略进行模拟交易后得到的结果。进行回测的目的是为了评估一个投资策略的盈利能力、风险水平以及其他相关指标。

回测结果中通常包括不同时间段的投资收益率、最大回撤、胜率等指标。这些结果可以帮助投资者了解该策略的优势和不足,从而进行调整和优化。

基本概念

回测结果通常包含多个方面的信息,主要包括:

  1. 总收益率:在策略回测期间,总收益率作为盈利或亏损的总体百

更新时间:2025-07-01 06:49

分页第1页第2页第3页第4页第5页第6页第7页第8页第9页第13页
{link}